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In this work we explore limits of using a functionalized carbon nanotube as a mechanical sensor
of small gas-phase molecules. Specifically, we investigate how fast can a change in tip mass be
detected and how small a change can be detected as a simplified version of the attachment of
weakly-bonded gas phase molecules. Filtering and identification techniques are based on a special-
ized, parallel Kalman filter, newly developed continuum beam theory and a Langevin model of the
thermal vibrations of the carbon nanotube. In this simulation-based work, we account for thermal
noise that is intrinsic to the carbon nanotube and the attached substrate but omit detector noise for
simplicity.
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1. INTRODUCTION

Over the last few decades, nanomechanical systems have
drawn keen interest and have started to make technolog-
ical impact (see Refs. [1, 2] for a review). Specifically,
sensors have become more accurate and sensitive as their
primary components have been scaled down. For exam-
ple, cantilever-based devices, like the atomic force micro-
scope, have benefited from less inertia as their tips have
been made smaller. These devices have also experienced
increased sensitivity to force due to several factors peculiar
to the nanoscale, such as reduced inertia.
A mass sensor based on a carbon nanotube (CNT) has

the potential to be extraordinarily sensitive, as the recent
work of Jensen, Kim and Zettl3 and others4–7 demon-
strates. As evidenced by the work of Treacy et al.8 and
others, e.g., Ref. [9]; however, these nano-scale devices
are subject to substantial thermally-driven vibrations. This
is particularly problematic since most of these mechan-
ical sensors depend on their resonance properties9–14 to
function. As a result, many of the experiments were
performed at cryogenic temperatures15�16 to reduce ther-
mal noise or forced using an external electric field17 to
enhance the signal relative to the thermal noise. Vibra-
tions due to thermal energy are not the only source of
noise in these cantilever sensors but it is one of the few
that is intrinsic to the CNT. A number of authors2�18�19

∗Author to whom correspondence should be addressed.

have explored the various sources of noise and associated
dissipation mechanisms in a comprehensive fashion. In
addition to design of the nanoscale cantilever and the
functionalization required to capture the target molecule,
the construction of the detector that identifies changes the
resonator’s motion involves considerable technical devel-
opment. There have been many complex approaches to
tip displacement detectors, e.g., field emission,3�17 electron
microscopy, laser interferometry,15 piezoelectric changes,
changes in capacitance,12 and techniques based on a single
electron transistor.16�20�21 The optimal technique depends
on the material, environment and the configuration, and
continues to be the subject of considerable research. If
these challenges can be overcome, CNT-based sensors
could enable a revolution in sensing technology in the sci-
entific, industrial and public safety arenas. For instance,
on-chip arrays of sensors could be used to detect chemicals
in low concentrations and on short timescales. Moreover,
they could be deployed in a widely dispersed and locally
redundant fashion with different functionalization specific
to multiple molecules.
The focus of this work is to examine the limits of real-

time detection in the presence of thermal noise; hence we
assume a perfect, noiseless detector in order to concentrate
on the intrinsic thermal noise of the CNT-substrate sys-
tem. To fully realize the potential of a CNT-based sensor
in a gaseous environment we develop real-time detection
techniques for molecules of interest on a functionalized
tip within a finite residence time. Our intent is to improve
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practical detection algorithms such as that of Jensen et al.3

which is based on the simple (sensitivity) relation

��≈ ��

�m

∣∣∣∣
m=0

m=−2
m

M
�

between the observed frequency � and the ratio of the
added mass m to the mass of the CNT M .a The intrin-
sic sensitivity ��/�m is commonly referred to as “mass
responsivity,” see, e.g., Ref. [14]. In Jensen et al.’s pio-
neering work, the authors show that they can detect from
1 to 51 Au atoms adhered to a multi-wall CNT of length
205 nm and mass M = 1�58×10−21 kg, corresponding to
mass ratios of m/M ≈ 0�00021 for 1 attached Au atom,
and m/M ≈ 0�0011 for 51 attached Au atoms. These mea-
surements are based on a technique detailed in Ref. [5]
where the spectral density of the observed, fluctuating fre-
quency is integrated over a frequency bin around the fun-
damental frequency in order to detect a frequency shift in
the resonator. Fundamentally, mass resolution depends on
observation time since the width of the bin is inversely
proportional to this parameter. We estimate the detection
time associated with the Jensen et al. device3 to be on
the order of 1 second. Time-resolution on the order of 1
second is commensurate with the work of Feng et al.,14

which also observed that the mass resolution behaves like
a power law with observation time for their Si nanowire
device.
Using the computational technique of molecular dynam-

ics (MD) we have the capacity to simulate the ther-
mal vibrations of a CNT and the effects of an attached
molecule with atomic detail and on time-scales rang-
ing from the period of atomic vibrations to nanoseconds.
Specifically, we employ an MD model system of the
CNT embedded in a substrate with or without a molecule
attached to the tip, see Figure 1. Due to (hypothetical)
selective functionalization of the tip only, we assume that
the binding of a small molecule occurs only at the tip. An
explicit, thermalized substrate is chosen so that the CNT
will have trajectories that have realistic thermal fluctua-
tions on time-scales ranging from that of atomic vibra-
tions to the fundamental period of the cantilevered CNT
without the direct application of a thermostat or ensemble
averaging.
To facilitate this approach, many simplifications are

expedient and necessary to make the problem computa-
tionally tractable. Foremost, is how the molecule is and
becomes attached to the tip of the CNT. In this work,
we add a representative mass directly by increasing the

aIn these works, the CNT and added mass system is modeled as a

harmonic oscillator � =
√
K̃/�M + �m	, where K̃ is an effective spring

constant. The mass responsivity �� results from a linearization of this
relation. The weight factor � is the ratio of the square displacement at
the point of attachment to the average square displacement and � = 4 for
a mass attached to the tip, as will be shown in Section 2.

mass of the atoms at the free end of the cantilevered
CNT. Since the resonant frequencies of a small attached
molecule would be very high compared to the fundamen-
tal frequency of beam,b we believe this assumption does
not change the fundamental nature of the problem. Also,
in this work we do not simulate the complex dynamics
of capture of a molecule by a functionalized tip. Specifi-
cally, we do not attempt to model mechanics of collision
(energy and momentum transfer) and attachment (the ener-
getics of bonding) nor the exact mechanisms resulting in
a finite residence time in the gas phase (see Ref. [6] for a
discussion). We also omit fluid damping on the vibrations
of the CNT since we assume it is negligible at this scale
(see Ref. [13] for experimental data of a CNT resonator
in air and vacuum where the differences are ascribed to
adsorbed molecules and the adsorption-desorbtion noise
described in Ref. [22]).
With these assumptions and limitations, the problem

we examine is reduced to: given a CNT of a well-
characterized length, radius, and flexural rigidity at the
ambient temperature (a) what is the minimum mass that
can be detected for a given error tolerance, (b) what is
the minimum time for detection given a mass. Our pro-
posed solution is to use a parallel array of Kalman filters
(KFs) deployed as an “on-the-fly” Fourier transform in the
neighborhood of the fundamental resonance frequency. We
compare the results of this adaptive KF algorithm to the
“truth” of an exhaustive discrete time Fourier transform
(DTFT) which involves a fine-grained frequency scan over
the range of interest.
To connect our solution to the problem at hand, we

first develop the theory to describe the shift in amplitude
and frequency based on an attached mass in Section 2.
In this section, we provide a coarse-grained continuum
beam model that provides an understanding and prediction
of the resonance structure of a cantilevered CNT. Build-
ing on this, we present a generalization of the results of
Treacy et al. to a CNT with an added mass. This beam-
based theory gives us an accurate model of the shifts in
the resonant frequency and amplitude in response to an
attached molecule. In addition, we develop a reduced-order
Langevin model of the CNT vibrations to describe the
shape and intensity of the primary resonance peak, as well
as provide a reasonable process surrogate for testing of
our algorithms. Together these theories provide the process
characterization necessary to relate measurable changes to
added mass. Since these changes are fundamentally spec-
tral in nature and yet we want rapid, real-time detection of
an attached molecule, in Section 3 we choose to develop
a specialized version of the traditional KF, as well as an
adaptive algorithm to track the shift in peak amplitude
due to an attached mass. In this section, we also contrast

bIn addition, these frequencies are most likely at or beyond the limits
of what is possible with the currently-available, appropriate frequency
detection technology.
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the new method with filters based on recursive Fourier
transforms and sequential Bayesian updates. In Section 4
we apply the easily parallelizable algorithm to a sequence
of resonator models of increasing complexity and fidelity,
starting with a noisy sine, through the Langevin model,
and culminating with the MD data. In this Results section
we quantify the performance of the algorithm with respect
to noise tolerance, sampling efficiency, etc. and answer
our two thesis questions on the theoretical limits of mass
detection. In the final Discussion section we summarize
the main results of the paper and give indications for future
work.

2. THERMAL VIBRATIONS OF A CARBON
NANOTUBE

The thermal vibrations of a carbon nanotube suspended by
one end are clearly visible in microphotographs, e.g., Ref.
[8, 9, 16], and can be large relative to the diameter of the
CNT at room temperature depending on its length. These
fluctuations are simply the thermal lattice vibrations, i.e.,
phonon modes, that have amplitudes that are significant on
the scale of the diameter of the CNT. It is these motions
which, in part, limit the sensitivity of nanoscale sensors.
The mitigation strategy proposed in this work is based on
characterizing the phonon spectra followed by devising fil-
tering techniques to enhance the signal generated by an
attached mass. Fully characterizing CNT phonon spectra
is a difficult endeavor, so we will instead use a hierarchy
of models to provide sufficient insight into CNT thermal
motions for filtering purposes.
Molecular dynamics (MD) is typically employed to

model the dynamics of molecular systems on this scale
and is an ideal tool for representing phonons and thermal
noise, and therefore is our highest fidelity model, albeit a
computationally expensive one, of the finite temperature
CNT. Figure 1 shows the cantilevered configuration of the
CNT/substrate/tip-mass system. Figure 2 shows the spec-
tral response of the freely vibrating CNT tip which is key
to the filtering problem we will undertake in Section 3.
More details relevant to the MD version of the CNT will
be given in the Results section.
However, the expense associated with MD makes it

impractical for real-time detector applications. Therefore,
in this section we develop two reduced order models of
the thermal vibrations of a CNT: one based on continuum

Fig. 1. A 17.8 nm long, �10�10	 CNT (blue) embedded in a substrate
of Au atoms (red). The tip atoms are highlighted in green.
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Fig. 2. The tip displacement intensity spectrum for a 17.8 nm long,
�10�10	 CNT showing a fundamental resonance at 0.0143 THz and
higher resonances of decreasing intensities.

beam theory and the other on the Langevin formalism.
These two models capture the salient features of the reso-
nance of a thermalized CNT with a tip mass. The idea of
using beam theory8�9�23 or a full continuum model24�25 to
represent the motion of a CNT is well established, at least
in the context of mechanical deformation (ignoring ther-
mal vibrations). The use of a Langevin model, on the other
hand, is not seen in the relevant literature for CNTs other
than in its implicit use in modeling the quality factor of
resonators26 but does have a long history in the anahar-
monic phonon interaction literature.27–29

2.1. Beam Theory

The simplest continuum beam theory, the Euler–Bernoulli
beam


Aü=− �2

�x2

(
EI

�2

�x2
u
)

(1)

is appropriate for relatively long, narrow beams and
small (linear), low frequency vibrations. It is sufficient to
describe the first/fundamental mode of CNTs.30 We denote
u�x� t	 as the transverse deflection with x being the coor-
dinate along the length of the beam, u′ = ��/�x	u is the
slope of the deflection, EIu′′ is the bending moment, and
−�EIu′′	′ is the shear force. Here, 
A is linear mass
density and EI is the flexural rigidity.c The constitutive
model relates the local curvature to the bending moment
and ignores the energy from all other deformation modes.
The dispersion relation between frequency � and wave-
number k is

�2 = EI


A
k4 (2)

cE is Young’s modulus and I is the area moment of inertia. For a tube
I = ��/4	�r4o − r4i 	= ��/4	A�r2o + r2i 	. Since I is ambiguous for a CNT
due to the need to define a thickness ro−ri, we consider only the flexural
rigidity EI which is a constant for a given chirality.
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For the case of a point mass affixed to the end of a
Euler–Bernoulli cantilever, the shear boundary condition
at x = L is

�

�x

(
EI

�2

�x2
u

∣∣∣∣
x=L

= f (3)

where f is the force a concentrated mass exerts on the tip.
The other boundary conditions are u = 0 and u′ = 0 at
x = 0 and −EIu′′ = 0 at x = L. Since the attached mass
at the tip can be treated simply as a boundary condition
and the governing equation has not changed, the assumed
modal solution for this fixed-free beam is the same as it
would be without the attached mass:

u�x� t	=
�∑
n=0

un�t	�n�x	 (4)

where �n = ��knx	 = A1 cos�knx	 + A2 sin�knx	 +
A3 cosh�knx	+ A4 sinh�knx	. The mode shapes �n that
satisfy the two boundary conditions at x = 0 are

�n =A1�cos�knx	−cosh�knx		+A2�sin�knx	−sinh�knx		
(5)

In the case of the mass being directly attached to the
beam,d Newton’s law (3) for the small molecule reduces to

f =mü �x=L =m�2u �x=L = EIL
m

M
k4u

∣∣∣∣
x=L

(6)

after substitution of the dispersion relation (2) and the
mass of the beam M = 
AL. The resulting characteristic
equation for the wave-number k

1+ cos�knL	 cosh�knL	 =
m

M
knL�cos�knL	 sinh�knL	

− sin�knL	 cosh�knL		 (7)

obviously reduces to the usual fixed-free cantilever charac-
teristic equation in the limit m/M → 0. From the boundary
condition −EIu′′ = 0 at x = L,

A2 =−cos�knL	+ cosh�knL	
sin�knL	+ sinh�knL	

A1 (8)

and consequently

�n = An

(
cos�knx	− cosh�knx	−

cos�knL	+ cosh�knL	
sin�knL	+ sinh�knL	

× �sin�knx	− sinh�knx		
)

(9)

dFor a generic tip force of the form f = C�k	u �x=L the characteristic
equation is:

1+ cos�knL	 cosh�knL	 = C

EIk3
�cos�knL	 sinh�knL	

− sin�knL	 cosh�knL		

A mass (or molecule) attached by an elastic bond to the tip of the CNT is
of this form but involves an additional degree-of-freedom and attendant
governing equation for its dynamics.

which is the same as fixed-free solution31�32 since it
does not depend on the tip mass m. For m/M = 0, the
roots of (7) are knL ≈ �
0�596864�1�49418�2�50025�
3�49999� n+ 1/2�; whereas, for m/M = 1, the roots are
knL ≈ �
0�397224�1�283151�2�270865�3�264784� � � ��,
and for m/M → �, the roots are knL ≈ �
1�24988�
2�25�3�25� � � ��, see Ref. [33] and Figure 3. In fact, the
first frequency of the fixed-free beam with a tip mass con-
verges to zero and the second becomes the fundamental
(first mode) of a fixed-pinned beam (u= u′′ = 0 at x = L)
in the limit �m/M	→�.

An orthogonality condition

��2
i −�2

j 	

[
1
L

∫ L

0
�i�j dx−

EI


AL

[
�i�

′′′
j −�j�

′′′
i

+� ′
i �

′′
j −� ′

j�
′′
i

∣∣∣∣
x=L

]

= ��2
i −�2

j 	

[
1
L

∫ L

0
�i�j dx+

m

M
�i�j

∣∣∣∣
x=L

]
= 0 (10)

is obtained from the difference in modes substituted into
governing Eq. (1). To facilitate the subsequent analysis,
we impose the normalization

1
L

∫ L

0
�i�j dx+

m

M
�i�j

∣∣∣∣
x=L

= �ij (11)

where �ij is the Kronecker delta. It is important to note
that this normalization is only valid for frequencies that
satisfy the characteristic Eq. (7). Consequently, the poten-
tial energy due to bending can be reduced to:

U�t	 = 1
2

∫ L

0
EIu′′ ·u′′ dx

= 1
2

(∫ L

0
EIu′′′′ ·udx+ �EIu′′′ ·u−EIu′′ ·u′�L0

)
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Fig. 3. The inset shows the change in the three lowest frequencies of
an Euler–Bernoulli beam with the rigid attachment of a tip mass. The
fundamental �0, shown in both the inset and the larger graph, converges
to zero and the second harmonic converges to the fundamental of a fixed-
pinned beam. Note the black line in the main plot is the linearization
�0�m/M	/�0�0	= 1−2�m/M	.

J. Comput. Theor. Nanosci. 8, 1364–1384, 2011 1367



Delivered by Ingenta to:
Tiffany Vargas

IP : 198.206.219.39
Sun, 21 Aug 2011 09:41:12

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Simulated Real-Time Detection of a Small Molecule on a Carbon Nanotube Cantilever Jones et al.

= EIL

2

∑
n�m

k4n

(
1
L

∫ L

0
un ·um�n�m dx

+ m

M
�un ·um�n�m�x=L

)

= EIL

2

∑
n�m

k4n un�t	 ·um�t	

×
(
1
L

∫ L

0
�n�m dx+

m

M
��n�m�x=L

)

= EIL

2

∑
n

k4n �un�t	�2
(
1
L

∫ L

0
�2
n dx+

m

M
��2

n �x=L

)

= EI

2

∑
n

k4n�un�t	�2 (12)

using (11). At equilibrium, equipartition of the potential
and kinetic energies [Ref. [34], Section 6.4] requires

	En
 = 2	Un
 = kB� (13)

where En is the total energy, Un = �EI/2	k4nu
2
n is the poten-

tial energy per mode and per transverse coordinate, kB is
the Boltzmann constant and � is the temperature. (The
angle brackets here and later denote a long-time average.)
Consequently,

	u2
n
 =

kB�

EILk4n
= kB�

M�2
n

(14)

where un represents either of the components of un since
they are independent and equivalent. Thus the often cited
result derived by Treacy et al.8�35 generalized to a CNT
with an added mass at the tip is

�u�2L ≡ 	u2�L
 =
〈 �∑
n=0

un��n�L
〉2

=
�∑
n=0

	u2
n
��n�2L

= kBT

M

�∑
n=0

�−2
n ��n�2L� (15)

assuming that the modes are incoherent (i.e., have ran-
dom phases) so that 	unum
 = 0 if n �= m. Here, ��n�2L ≡
�2
n�x = L	 is given by

m

M
��n�2L = 1− 1

L

∫ L

0
�2
n dx (16)

which is a consequence of the normalization (11).e

There is obviously a lower limit to the applicability of
the continuum approximation for a discrete system like a
CNT but the series (15) converges quickly. In fact,

�∑
n=0

�knL	
−4 = 
A

EIL4

�∑
n=0

�−2
n = 1

12
(17)

eThe ratio ��n�2L to �1/L	
∫ L

0 �2
n dx is equal to 4 at m= 0 as mentioned

in the Introduction. Krishnan et al.35 takes An = 1/2 so that �L = 1 for a
CNT without an attached molecule.

for a cantilever with m/M = 0 given the roots of the
characteristic Eq. (7). The ratio of the contribution of the
first mode to the second is u1/u0 = �k0/k1	

4 which is
approximately 0�025 for an unencumbered cantilever. The
ratio of the contribution of the first mode to all the rest
is �1/u0	

∑
n=1 un = �1/k−4

0 	
∑

n=1 k
−4
n which is approxi-

mately 0�030 for an encumbered cantilever. So it is appar-
ent that the tip trajectory of a thermally excited beam (with
a small tip mass or without) can be accurately approx-
imated by a single harmonic oscillator with natural fre-
quency �0.

Since the relation (15) depends on the solution of the
characteristic Eq. (7), there is no closed form solution to
the influence of added mass on the tip displacement ampli-
tude. Figure 4 displays the numerical solution to ampli-
tude response of the beam as a function of the attached
mass. Figure 4a shows that the fundamental mode, which
contributes most of the tip amplitude, is relatively insen-
sitive to added mass whereas the higher modes decrease
with added mass. The fact that �u0�2 is essentially constant
implies that u2

L ∼ k4. This same trend for the fundamental
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mode can be seen in Figure 4(b) which shows the average
squared displacement along the length of the beam to be

�u2
n� =

kB�

EIL
k−4
n ��n�2 (18)

where ��n�2 ≡ �1/L	
∫ L

0 �2
n dx. The figure also shows that

the contribution of the higher modes increases with m.
Recalling the fact that �0 → 0 in the limit �m/M	→�,
i.e., the first mode becomes static, it is not clear what
happens to equipartition condition which stipulates kBT =
U0 = M�2

0	u2
0
. The fact that the response of a beam

with a tip mass converges to that of a fixed-pinned beam
is also demonstrated by the fact that the higher modes
contributions to the tip displacement decreases while the
average displacement increases, i.e., the maximum dis-
placement amplitude moves away from the tip. Practically
speaking, for a beam with a small mass attached the limit
�m/M	→� is not particularly relevant other than as a
check on the theory, while the insensitivity of the tip dis-
placement to added mass makes equilibrium amplitude
detection of attached mass impractical.

2.2. Langevin Model

Although the beam theory is very useful in describing
some aspects of the behavior of the CNT, the observation
that approximately 97% of the motion in thermal equi-
librium is due to the fundamental mode allows treatment
of the tip displacement as a simple noisy harmonic. More
precisely, we employ a Langevin oscillator to represent
the fundamental mode in a bath of a finite number of
higher modes and the attendant spreading of the funda-
mental peak from an undamped resonance displayed by
the MD data in Figure 2. For simplicity, throughout this
section we use the notation u for the tip displacement uL.
The Langevin equation is a stochastic ordinary differen-

tial equation (SODE) that can take the form of a damped
harmonic oscillator

mü=−ku−�u̇+ r (19)

driven by a random force r = r�t	 representing the higher
modes. Here, m is an (effective) mass, k is an (effective)
spring constant and � is a damping coefficient.f A more
formally correct version of (19) is

mdv =−�ku+�v	dt+� dBt (20)

where v= du, see Ref. [36, Chapters 3 & 5]. The Wiener
process representing the white noise r is partially defined
by dBt ∼ � �0� t	=√

t� �0�1	, so that

r dt = � dBt = �
√
dtwt (21)

fA Langevin system with multiple resonances could also be developed
but this level of complexity is unnecessary since we confine our atten-
tion to frequencies near the fundamental resonance. Without higher reso-
nances, decay of the amplitude spectrum far above resonance is like �−4

which deviates significantly from the observed �−2 behavior.30

for wt ∼ � �0�1	 and � �0�1	 being the zero mean,
unit variance normal distribution. Following Kubo [37,
Chapter 1], a Fourier transform of this SODE leads to the
spectral intensity of the response �u being related to the
intensity of the random force �r by

�u��	= �H��	�2�r ��	 (22)

where the magnitude of the system response H��	 is

�H��	�2 = �m2���2
0−�2	2+ ��0�	

2Q−2�	−1 (23)

and the natural frequency is �2
0 = k/m. From (23), the

frequency at maximum amplitude � is

�

�0

=
√
1− 1

2Q2
(24)

where the quality factor Q is defined Q= �m�0	/�. So for
high Q, � ≈ �0 and �H��	�2 ≈ �H��0	�2 = Q2/�m2�2

0	.
The quality factor also determines the (velocity) relaxation
time m/� =Q/�0.
As in Ref. [37, Chapter 1], we make the assumption that

the random force is uncorrelated so that �r ��	 = Ir . The
auto-correlation

�r �t	= 	r�0	r�t	
 = 2�Ir ��t	 (25)

results from Wiener–Khinchin theorem where ��t	 is the
Dirac delta.g Consequently,

�u�t	 = � −1
�→t �H��	�2Ir

= �Ir
m��2

0

(
cos��dt	+

�

2�d

sin��dt	

)
exp

(
−�t

2

)
(26)

where �2
d = �2

0

(
1− �1/2Q	2

)
and � −1

�→t is the inverse
Fourier transform. Note that �u is continuous, unlike �r .
Now using equipartition 	U0
 = 	 1

2m�2
0u

2
 = 1
2kB�, i.e.,

assuming the system is in equilibrium,

	u2
 = �u�0	=
kB�

m�2
0

= �Ir
m��2

0

� (27)

Consequently,

�Ir = �kB� = m�0

Q
kB� (28)

where we have approximated the kinetic energy as 1
2m�2

0,
which is valid for high Q. This is a similar result
that developed for beam theory (14) in the previous
section. The (equilibrium) fluctuation-dissipation theorem
also results

	r�0	r�t	
 = �kB� ��t	 (29)

gThe theorem states that intensity �u is related to the auto-correlation
�u = 	u�0	u�t	
 through the Fourier transform �u��	 = �t→��u�t	 for
a stationary process.
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giving �2 = �Ir = �kB�. We now can obtain the peak
amplitude from the system response from (22)

Iu��	= �H��	�2Ir =
�0kB�

�mQ���2
0−�2	2+�2�2

0Q
−2�

(30)

so that

Iu��0	=
QkB�

�m�3
0

(31)

To discern the intrinsic fundamental parameters, we
non-dimensionalize (19)

¨̃u=−ũ− 1
Q

˙̃u+ r̃ (32)

where ũ = u/�, r̃ = r/�m�2
0�	, t̃ = t�0, and � =√

kB�/m�2
0. Now (21) becomes

r̃dt̃ = r

m�0�
dt = �

√
dt

m�0�
wt =

1
Q

√
Qdt̃wt (33)

and (20) becomes

dv =−udt− 1
Q
�vdt−√

Qdtwt	 (34)

where we have dropped the tildes for clarity. This model of
the white noise process is amenable to numerical solution
and retains the property dBt =

√
dt. It takes the variance of

the non-dimensional white noise to be �2 = dt/Q and the
non-dimensional maximum intensity as �u��0	=Q/�.

3. FILTERING ALGORITHMS

The previous section developed the characteristic Eq. (7)
that gave the sensitivity of changes in frequency to added
mass. It should be noted that this was not strictly an equi-
librium result. On the other-hand, the Treacy equipartition
argument is necessary for the amplitude change estimate,
and shows that the amplitude is largely insensitive to small
attached masses. Clearly, the sensitivity of the frequency
of the primary resonance recommends it over a scheme
based on detecting changes in amplitude. Nevertheless, the
changes in frequency are potentially very small for m�M
relative to the thermal noise (which was directly related to
the quality factor through the fluctuation-dissipation theo-
rem in the previous section).
Our goals require identifying the change in the fun-

damental frequency of oscillation of a CNT-based sensor
over times shorter than the residence times of the attached
molecules.h Unfortunately, identifying frequency shifts
using traditional spectral methods, such as the widely-
employed fast Fourier transform (FFT), have several draw-
backs pertinent to achieving this objective. The primary

hUltimately, the detection time is limited by the physical relaxation
time of the CNT to mechanical perturbations, which also can be directly
related to the quality factor of the CNT.

issue being that sampling over a long period of time is
required to obtain the necessary resolution in frequency
space. This fact alone recommends the application of a
real-time estimate of the maximum amplitude frequency
via techniques like the Kalman filter.
In this section we first review the basics of spectral

analysis and then develop a specialized Kalman filter (KF)
from the standard formulation. The Kalman filter is well-
known as the optimal filter for linear dynamical systems
with Gaussian process and measurement noise. An array
of these specialized KFs with an arbitrary frequency spac-
ing can be employed in parallel, together with an adaptive
algorithm developed in this section, to track the peak inten-
sity of a resonant signal, as we demonstrate in Section 4.

3.1. Fourier Analysis

The discrete time Fourier transform (DTFT) extracts spec-
tral information from a discrete time signal utj

Fi→�utj
=

�∑
n=−�

un exp�ın�	 (35)

where, in this context, utj
is u�t	 is sampled on period �t

(and not the j-th). It is in contrast to the discrete Fourier
transform (DFT) (and its implementation the FFT)

Fi→kun =
N−1∑
n=0

un exp
(
ı
2�
N

nk

)
(36)

which assumes a periodic extension of the signal and only
provides spectral content at discrete frequencies spaced
�� = 2�/T , where T = N�t. Both are connected to
the Fourier transform by the approximate relationships:
�t→�u�t	≈ Fj→�utj

�t, and �t→k��u�t	≈ Fj→kutj
�t for a

periodic signal.
Since only we only observe for a finite time T , the

DTFT of a sinusoidal signal u�t	= sin��0t	 is equivalent
to the Fourier transform of a windowed sine

�t→��sin��0t	h�t		

= �t→� sin��0t	∗�t→�h�t	

= ıT

2
√
2�

(
sinc

(
T

2
��+�0	

)
− sinc

(
T

2
��−�0	

))
(37)

where sinc�x	 = sin�x	/x is the sinc function, the “top
hat” window h�t	=��t−T /2	−��t+T /2	 is composed
of two Heaviside functions ��t	 and ∗ is the convolution
operator.i The sinc function sinc��T /2	��+�0		 has lobes

iStrictly speaking

�t→�

(
sin��0t	h�t	

)= ıT

2
√
2�

(
sinc

(
T

2
��+�0	

)
−sinc

(
T

2
��−�0	

))

+
√

�

2
���+�0	sin

(
T

2
��+�0	

)
−
√

�

2
���−�0	sin

(
T

2
��−�0	

)
�

where the last two terms are not observed in finite precision experiments
nor simulations.
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with zeros at 2�n/T + �0, n = � � � �−2�−1�1�2� � � � �
which decrease in width as T →�.
Parseval’s theorem

∑N−1
n=0 u

2
n = �1/N	

∑N−1
k=0 �Fn→kun�2

provides a means of the normalization of the spectrum
through the average power, e.g., for the sine

�̄u =
1
T

∫ T

0
u2�t	dt = 1

T

(
T

2
− sin�T�0	

�0

)

= 1
2
− sinc�T�0	≈

1
N

N−1∑
j=0

u2
tj

(38)

to arrive at an intensity �u. We recognize the first term
as �/�T��	 and the second as a perturbation due to not
always observing an integral number of periods of the
sine. Defining estimates of the spectral intensity of the sig-
nal utj

as

�u��	 ≈ lim
T→�

1
2�T

�Fj→�utj
�2�t2

= lim
N→�

1
2�N

�Fj→�utj
�2�t (39)

and likewise

�u�k��	≈ lim
N→�

1
2�N

�Fj→kutj
�2�t� (40)

we see that these definitions are consistent with Parseval’s
theorem

∫ �

−�
�u��	d� ≈

N−1∑
j=0

�u�j��	��

= lim
N→�

1
2�N

N−1∑
j=0

�Fj→�utj
�2�t 2�

N�t

= lim
N→�

1
N

N−1∑
j=0

u2
tj
= �̄u (41)

In the following we employ the notation

u2��	= 1
N
�Fj→�utj

�2 (42)

and refer to it as the “power” following the signal process-
ing literature.
Unfortunately, direct application of the DTFT to a finite

set of frequencies is difficult in this application given the
wide array of challenges that must be met. The greatest
challenge is minimizing the computational cost, which also
implies being parsimonious with the frequencies that are
included in the analysis and the communication between
the filters that track them. This last constraint effectively
eliminates the viability of the standard FFT. Limiting the
interaction between different frequency estimates is neces-
sary for scanning each of N frequencies in parallel. Also,
in order to perform real time detection of finite-duration

events, methods that utilize time averages are inappropriate
because of their long response time to the transient. In con-
junction with this observation, the limited number of fre-
quencies that can be included means that the frequencies
being analyzed must change over time as the method con-
verges. Facilitating such an approach requires the ability
to transfer information from a previous set of frequencies
to a new set in order to perform rapid restarting to quickly
identify the next best estimate. Given the frequency con-
tent of the CNTs being in the GHz and higher, it is also
necessary that the method be amenable to sampling at a
sample rate below the frequencies being considered (i.e.,
not subject to a Nyquist restriction), and to be robust in
the presence of noise caused by the higher order modes of
the CNT.
There is a large body of literature surrounding alter-

native methods to estimate the FT at a given frequency
in real time, and we will not attempt to exhaustively
review the literature in this area. Rather, we point to two
main approaches: recursive Fourier transforms (RFTs) and
sequential Bayesian analysis applied to Fourier coefficient
estimation.
Bayesian sequential analysis is the application of

Bayesian theory to sequentially-arriving data with the
objective being estimation of a function of this data. Esti-
mation of Fourier coefficients performed with this method,
e.g., Ref. [38], meets many of the required constraints.
However, estimating the posterior distribution is expensive
when the set of frequencies is close together and does
not span a significant extent of frequency space. A notion
embedded within the Bayesian approach involves select-
ing an optimal frequency among a set of frequencies based
on an estimate of each’s likelihood of being the correct
frequency. This general notion will prove useful in this
work, although more efficient methods will be used that
do not require the communication necessary in the Bayes
framework.
RFTs work in either the mode of a fixed number of data

points with recursive addition of new data and removal
of old data, e.g., Ref. [39], or by using a recursive least
squares solution to update the estimate, e.g., Ref. [40].
Recent improvements have removed the restriction of a
uniform sampling rate and arrived at a convenient update
formula [Ref. [41], Eq. (16)]. This formula bears a num-
ber of similarities to the one derived in the next section.
A principle difference, both in the approach and the final
update equation, is the treatment of noise. In the overar-
ching least-squares framework of Ref. [41] measurement
noise can enter through a weighting matrix, which, for
example, can be used to reduce the contribution of old data
to the update to produce a windowing effect. However,
in order to reduce the cost of the method the weighting
matrix was required to be the identity in the cited work,
meaning that uncertainty could not be directly incorporated
into the frequency estimate. Our formulation will explicitly
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account for the error in the system using an approach
based on Kalman filtering, as derived in the next section.
This filtering will form the basis of the inner iteration, with
a closed-loop outer iteration designed to converge to the
peak-amplitude frequency. As previously mentioned, the
amount of literature in this area is vast, making a full sur-
vey infeasible difficult. However, the authors are unaware
of this inner/outer loop approach to frequency estimation
being used in other applications.

3.2. Kalman Filter

As an alternative to traditional Fourier transform
approaches, this work considers an approach based on
Kalman filtering. The Kalman filter has been in use for
almost 50 years42 in a wide variety of applications. It pro-
vides an optimal estimate of the state of a linear, time-
varying system with Gaussian process and measurement
noise. For the present application, its key advantages are:
(a) its natural incorporation of noise which can be aug-
mented with the theoretical estimates developed in the pre-
vious sections,
(b) the fact that it is not tied to a particular sample rate,
and
(c) its formulation in terms of the present state and sam-
ple only, leading to an incremental cost to an improved
estimate over time.

An approximation of the KF particular to our applica-
tion will be derived later in this section that can easily be
restarted and interpolated assuming a continuous Fourier
transform in order to facilitate inner loop/outer loop fre-
quency estimation. Most importantly, the computational
cost of each KF is very low and each frequency can be
considered individually within the inner, Kalman-based
loop.
Kalman filtering in typical applications involves esti-

mating the state of the system in the presence of additive
process and measurement noise. The estimate is optimal
for linear systems with Gaussian white noise. Estimation
of spectral content of a signal is a slightly different appli-
cation. For the present theoretical treatment, we consider
there to be no significant noise associated with taking a
measurement although future can incorporate it into the
Kalman filter framework. Rather, the uncertainty will be
associated with the motions of higher order modes rela-
tive the fundamental mode. As a model, consider a sys-
tem composed of M harmonic components so there are
2M degrees of freedom (position and velocity for each
oscillator) undergoing the following dynamics without pro-
cess noise:

xMk = FM
k xMk−1� FM

k =
[

0 I

−K 0

]
� (43)

where I is an M ×M identity matrix and K is an M ×M
diagonal, positive-definite matrix. The observation proce-
dure also is noise-free

yMk = HM
k xMk � HM

k = [
1 � � � 1 0 � � � 0

]
� (44)

with the change from 1 to 0 occurring from the M to
M + 1 entry to sum over all the positions. Hence, the
observation is

yMk = x1
k +

M∑
m=2

xm
k � (45)

where x1
k contains all the amplitude information associ-

ated with the fundamental frequency of oscillation. The
theoretical development of the previous sections sug-
gest that limM→�

∑M
m=2 x

m
k = Wk, where Wk is a white

noise process of appropriate amplitude if 	�x1
k	

2
 �
limM→�

∑M
m=2	�xm

k 	
2
. The final observation process used

in this work can then be written as

yk ≈ x1
k +Wk� (46)

by having the noise term account of the sum of the motions
of the all the modes above the fundamental.
In this model, the oscillators are uncoupled, allowing

the position of each to be spectrally decomposed as:

xi
k�t	= ai cos�it+bi sin�it� (47)

Taking the unknowns of interest to be a1 and b1 and let-
ting x denote this new state vector, the Kalman filtering
problem can be written as:

xk = Fkxk−1

yk = Hkxk+Wk�
(48)

In this model, the noise Wk is Gaussian with covariance
matrix Rk. The Kalman filter (KF) provides an estimate
x̂k with minimum covariance Pk and is the optimal linear
estimate given this noise. To filter the CNT tip position,
the state would typically be considered to be one of trans-
verse displacements. However, our intended purpose is to
estimate frequency content so the state xk is instead taken
to be the Fourier coefficients of this signal. Within the con-
text of estimating the spectral content in a signal ui, we
use the following values for the states and matrices:

xk =
[
ak

bk

]
� Fk =

[
1 0

0 1

]

HT
k =

[
cos�t

sin�t

]
� Rk = �2

k �

(49)

so that �x�2 estimates u2��	≡ �1/N	�Fi→�uti
�2. While in

this case development has focused on noise sources arising
from higher order modes, it is also applicable to more gen-
eral noisy measurements of system parameters. For exam-
ple, the Langevin model presented in this work does not
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precisely conform to this structure because the white noise
source embedded in this model is shaped by the system
response and is integrated in time to obtain the observa-
tional uncertainty. As will be shown in the Results section,
the proposed method is applicable to this situation as well.
For the CNT, theoretical estimates have been made in

this work and in Ref. [8] that enable determination of the
various uncertainties present. In particular, the observation
noise is attributed to the interaction of the high frequency
modes with the fundamental (as in the Langevin model of
Section 2.2). The variance of this noise can be estimated
based on the amount of energy in these modes. Similarly,
the energy in the fundamental model can be related to the
amplitude of oscillation of the CNT. From this amplitude,
the initial variance can be determined assuming the phase
is random. We employ the estimates:

c0 = 	u2
1
 ≈ 0�97	u2


�2
0 =

n∑
i=2

	u2
ti

 ≈ 0�03	u2
 (50)

re-derived from beam theory in Section 2 for a CNT with-
out a tip mass. Alternately, we could have initialized the
covariance with the estimate �2 ∼Q−1 from the Langevin
model but chose not to given that Q is not typically well-
characterized.
The Kalman update is composed of three steps: a predic-

tor, a measurement, and a corrector. The predictor step is

x̂k�k−1 = Fkx̂k−1 = xk−1 (51)

Pk�k−1 = FkPk−1F
T
k = Pk−1� (52)

In this case, the predictor is trivial due to the assump-
tion of stationary amplitudes and phases, i.e., we assume a
so-called wide-sense stationary process in (49). The mea-
surement is

yk = zk−Hkx̂k−1� (53)

which is again straightforward. Note the measurement yk
is the difference between the actual system observation zk
and the appropriately weighted sum of the cosine and sine.
Finally, we consider the standard Kalman corrector step

Sk = HkPk−1H
T
k +Rk (54)

Kk = Pk−1H
T
k S−1

k (55)

x̂k = x̂k−1+Kkyk (56)

Pk = �I−KkHk	Pk−1� (57)

Note in this formulation, the innovation covariance Sk is
a scalar. This step is non-trivial, with the most significant
complication being the arbitrariness of Pk−1 because the
initial condition, P0, must be assumed. Understanding and
improving the method relies on understanding Pk−1 and

the matrix-vector product Pk−1HT
k . To accomplish this, first

consider a form of the matrix P, denoted P†, to be

P†
k−1 = ck−1

[
cos��tk	HT

k sin��tk	HT
k

]
≡ ck−1

[
cos��tk	Hk

sin��tk	Hk

]
= ck−1H

T
k Hk� (58)

This makes the product

P†
k−1H

T
k = ck−1

[
cos��tk	�Hk�2
sin��tk	�Hk�2

]

= ck−1

[
cos��tk	

sin��tk	

]
≡ ck−1H

T
k � (59)

Upon substitution, the following simplifications arise:

S†
k = ck−1+�2

k (60)

K†
k =

ck−1

ck−1+�2
k

HT
k � (61)

The update for P†
k is then

P†
k =

(
1− ck−1

ck−1+�2
k

)
P†
k−1� (62)

where we have used the fact that

HT
k HkP

†
k−1 = P†

k−1� (63)

Equation (62) provides the decay rate of the covariance
matrix since

ck =
(
1− ck−1

ck−1+�2
k

)
ck−1� (64)

Using this covariance matrix also enables deeper under-
standing of the evolution of the estimate. The update equa-
tion is

x̂†k = x̂†k−1+
ck−1

ck−1+�2
k

HT
k yk� (65)

This shows that the noise level adjusts the gain into which
the errors in the observed and predicted signals are added
into the harmonics through the term ck−1/ck−1+�2

k . This
leads to the expectation that the Kalman response at any
frequency is equal to a top hat function at the origin con-
volved with the true signal after the covariance converges,
as in Eq. (37).
While illustrative, there is a clear contradiction between

Eqs. (62) and (58). The latter shows that P†
k is of a constant

form with magnitude decay while the former shows that
the matrix itself changes as the harmonics evolve. This
contradiction can be resolved by choosing a perturbation
to P†

k,

Pk−1 = ck−1

[
cos��tk−1	HT

k−1 sin��tk−1	HT
k−1

]
� (66)
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For small values of ��t, we can use Taylor series expan-
sion about tk−1 = tk−�t to obtain

Pk−1H
T
k = ck−1

⎡
⎢⎢⎢⎢⎢⎣

cos2��tk−1	 cos��tk	

+ cos��tk−1	 sin��tk−1	 sin��tk	

cos��tk−1	 sin��tk−1	 cos��t	

+ sin2��tk−1	 sin��tk	

⎤
⎥⎥⎥⎥⎥⎦

+O��t2	

≈ ck−1H
T
k +��t

⎡
⎢⎢⎢⎢⎢⎣

2 cos2��tk	 sin��tk	+ sin3��tk	

− cos2��tk	 sin��tk	

cos��tk	 sin
2��tk	− cos3��tk	

−2 cos��tk	 sin
2��tk	

⎤
⎥⎥⎥⎥⎥⎦

= ck−1H
T
k + ck−1�t Ḣ

T
k

When applied to the covariance update equation, we obtain

Pk =
(
1− ck−1

ck−1+�2
k

)
Pk−1−2c2k−1�t Ḣ

T
k Hk (67)

where the second term is the time derivative with respect
to the time-oscillating matrix elements and the first term
is the time derivative with respect to the amplitude decay
rate. The result is that P should obey the following ordi-
nary differential equation (ODE):

Ṗ = �

�2
k

�MT PM− I	 (68)

where

M =
[

1 1

−1 1

]
(69)

The effect of time discretization does add an error term
into the estimate x̂k of O��t	 because some of the error
between the signal and estimated harmonics is erroneously
assigned based on the time derivative. The method can be
improved by removing the discrete evolution equation for
Pk and replacing it with the exact solution:

Pk =
[

cos2��tk	 cos��tk	 sin��tk	

cos��tk	 sin��tk	 sin2��tk	

]
(70)

3.3. Maximum Amplitude Detection Algorithm

The results of the previous section are applicable to iden-
tifying the spectral content of a signal at a prescribed
frequency. Efficiently scanning a frequency range neces-
sarily implies using a set of these filters to sample the
range of frequencies. Since it is unlikely that the initial
set will contain the peak frequency, an adaptive approach
must be used if the Kalman filter frequencies are limited
to a finite set. In addition to converging to the frequency
with maximum energy, the method must also be able to

respond to transients. As will be shown, the Kalman fil-
tering algorithm approximates the DTFT which converges
to the time-averaged value of the frequency content. In
this section, we will first consider a method for iteratively
choosing a Kalman frequency set that finds and tracks
the peak frequency. In addition to locating the peak in
frequency space, the error associated with its location will
also be estimated. Restarting this algorithm after the esti-
mate has sufficiently converged and a peak identified will
be discussed. This facility will enable the algorithm to
effectively identify transient events. The error reduction
rate will determine the maximum restart rate, which, in
turn, drives the time resolution of the method.
Now, consider a set of 2N + 1 frequencies initially

evenly-spaced on the domain ��−N ��+N �. The associated
KFs are given initial conditions an�0 = bn�0 = 0 and Pn�0 = I
and allowed to observe the signal for a length of time T1.
After this length of time, a new set of frequencies is deter-
mined centered around the maximum frequency of the pre-
vious set. Because the Kalman filter algorithm reproduces
the DTFT, the width of the lobes in frequency space at
time t = T1 is used to select the initial spread of frequen-
cies of the Kalman filters. Specifically, the critical initial
time, T1, is when the lobe width 2�/T1 treating the signal
as a pure harmonic (refer to Section 3.1) is just less than
the width of the spread of the primary mode due to intrin-
sic damping (see Fig. 2 and Ref. [30, Fig. 1]).j A theoret-
ical estimate of the fundamental frequency from the beam
theory in Section 2 provides the initial center frequency.
Frequency tracking also requires a method for refining

the frequency set. The relationship with the DTFT pro-
vides a natural framework by letting the width in frequency
space match the lobe size at the current time, thus avoid-
ing the nodes where the amplitude goes to zero. We chose
to let refinement only occur if the frequency with maximal
energy is encountered in the center third of the current fre-
quency set. Otherwise the entire frequency set is shifted
in the direction of the maxima. If a minima occurs in the
middle third, the frequency set is expanded to promote
exploration. In contrast to the initial run, Ti for i > 1 are
reduced because they no longer have to get past the initial
large lobe to obtain a good estimate of the frequency con-
tent. To obtain a more rapid response rate, we empirically
determined that a value of Ti = T1/5 was appropriate.
A naïve restarting algorithm for stages i > 1 would use

the same initial conditions as the first run on the new
frequency set. This is disadvantageous for several rea-
sons. Most importantly, knowledge regarding the coeffi-
cient amplitude would be lost, as well as the connection
with the DTFT used to interpret the results. Maintain-
ing this connection requires interpolating the coefficients
an and bn to the new set of frequencies. If the exact

jRelating peak width to lobe width proved more successful in the trials
detailed in the Results section than estimates based on the decay rate of
the Kalman filter covariance amplitude.
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Kalman filtering algorithm is used, the covariance is also
interpolated. Otherwise it is directly set using Eq. (70).
While effective for frequencies within the existing band,
it is sometimes necessary to expand or shift the frequency
range. Extrapolation of the frequency information is used
in these cases; however, shifts are limited to not exceed
the spacing of the filters in frequency space so as to reduce
extrapolation error. By using these methods and restric-
tions to set the coefficients of the new frequencies, the
Kalman filter frequency identification is able to match a
long-time DTFT, as will be shown in the next section.
Algorithm 1 provides the details of this approach.

Algorithm 1 Peak Frequency Determination Based on
Lobe Decay and Global Restart

1: initialize: center frequency: � , width: ��
2: period of observation: T = T1, counter: C = 1
3: while T < Tmax do
4: initialize: a0 = b0 = 0, P0 = I
5: for i ∈ −N� N do
6: set �i =�+ i

N
��

7: initialize KFi using a0� b0� P0��i

8: end for
9: while t < T do

10: for i ∈ −N� N do
11: update KF i

12: t = t+�t
13: end for
14: end while
15: set �max =maxi �i

16: if �max = �−N then
17: � = �−N −��
18: else if �max = �+N then
19: � = �+N +��
20: else
21: � = �max

22: ��= �/T
23: end if
24: T = T +TC
25: end while

Basing the frequency sampling width on the DTFT lobe
size is an appropriate method for estimating a single fixed
peak. However, real time detection necessitates identify-
ing transient events. To provide this response time, the
entire frequency set is periodically restarted with the ini-
tial, broad frequency set and amplitude and covariance
coefficients. The rate at which this restart can occur deter-
mines the temporal sensitivity of event detection and is
driven by the accuracy of the estimate. Improving the accu-
racy of the peak estimate relative to the length of time
considered can be accomplished via a closed loop mecha-
nism, detailed in Algorithm 2. Rather than using the lobe
size to provide the sampling width, as in Algorithm 1, the
width is adjusted based on the energy content of the set
of filters. First, if a maxima occurs in the middle third

of the frequency set, the location and amplitude of the
maximum frequency is determined using a parabolic fit
over the inner third set of amplitudes (more complex func-
tional forms, e.g., Gaussian and Lorentzian, could be used
but at the cost of increased computational time to per-
form the non-linear regression). Amplitude thresholding is
used such that the new frequency range covers all frequen-
cies with some fraction of the energy of the peak using
the assumed fitting function. We denote this threshold as
B, so that when B = 0 there is no knowledge as to the
location of the peak, and when B = 1, the peak’s loca-
tion is completely determined. Convergence is facilitated
by increasing B after every restart in which the peak fre-
quency occurred in the middle third according to:

B = 1− �B

C
� (71)

The parameter �B regulates how quickly B approaches
unity, and C is the count of times in which the peak
frequency occurred in the middle third, i.e., a maximum
was found within the frequency set. By using this closed-
loop resetting algorithm (Algorithm 2), the convergence of
the peak frequency is significantly enhanced, as will be
demonstrated in the Results section, thereby increasing the
global restart rate which determines the overall sensitivity
of the method.

Algorithm 2 Peak Frequency Determination Based on
Sample Variance and Local Restart
1: initialize: � , ��, �TL�0, �TL, �TG, �B, C = 1, t= t0,

c = c0, ai = bi = 0,
2: T = t0+�TL�0, B = 1−�B
3: while T < Tmax do
4: for i ∈ −N� N do
5: set �i =�+ i

N
��

6: set Pi using Eq. (66), �i, c, and t
7: initialize KFi using ai� bi� Pi��i

8: end for
9: while t < T do

10: for i ∈ −N� N do
11: update KFi
12: end for
13: end while
14: A−1 = ave(�ai�2+�bi�2) for i ∈ −N� −N/3
15: A0 = ave(�ai�2+�bi�2) for i ∈ −N/3� N/3
16: A+1 = ave(�ai�2+�bi�2) for i ∈ N/3� N
17: if maxA−1�A0�A+1

= A0 then
18: ��= 2��
19: C =max�C−1�1	
20: else if argmaxi��ai�2+�bi�2�=−N then
21: � =�−��
22: else if argmaxi��ai�2+�bi�2�=+N then
23: � =�+��
24: else
25: � = argmax�g��	 where g��	 is the parabolic

fit using ��max−1��max��max+1	
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26: �lo = maxj<max�j such that �aj �2 + �bj �2 <
Bmaxi��ai�2+�bi�2	

27: �hi = minj>max�j such that �aj �2 + �bj �2 <
Bmaxi��ai�2+�bi�2	

28: if lo =−N then
29: � =�−��
30: else if hi =+N then
31: � =�+��
32: else
33: ��=max��max−�lo� �hi−�max	
34: C = C+1, B = 1−�B/C
35: end if
36: end if
37: if T − t0 > �TG then
38: t0 = T , T = t0+�TL�0, �� = ��0, B = 1−�B,

C = 1, c = c0, ai = bi = 0
39: else
40: for i ∈ −N� N do
41: interpolate an, bn using polar coordinates
42: end for
43: T = T +�TL
44: end if
45: end while

4. RESULTS

In this section, we demonstrate results of applying the
algorithms developed in the previous section to a sequence
of models of the CNT sensor increasing complexity cul-
minating in a MD simulation of a CNT with a tip mass
and the thermal noise intrinsic to the CNT and sub-
strate. Before employing the KF algorithm on the MD
data, we validate it on the computationally less expen-
sive and parametrically simpler noisy sine and Langevin
(see Section 2.2) model systems. Both models are sim-
ple enough to lend themselves to analysis, yet contain the
basic features of our target system and, hence, are good
surrogates for thermally-excited CNT tip dynamics. In par-
ticular, Langevin dynamics have more features particular
to the thermalized CNT but requires more sophisticated
analysis and therefore is a stepping-stone to the full CNT
dynamics.
For these model systems, we show:

(a) KF spectral density correlates well with the DTFT and
FFT of the signal,
(b) rate of convergence of the (incrementally updated)
KFs is comparable or better than the DTFT, and
(c) the KF is robust with respect to noise.

The theory developed in Sections 2 and 3 is used to pro-
vide expectations of the system response and appropriate
model parameters. In addition, we use fine-grained DTFT
frequency scans and ensemble averages as direct estimates
of the stochastic response these surrogates for the CNT tip
dynamics.

4.1. Noisy Harmonic

For sample interval �t and period P = 2�/�0, a normal-
ized noisy sinusoid is simply

uti
= sin��0�ti	+

√
�t

Q
wi (72)

where we chose �t = P/100��0 = 1 and wi to be sam-
pled from the zero mean, unit variance normal distribu-
tion � �0�1	. The Kalman filter measurement variance is
�2 = �t/Q consistent with the process noise. Clearly,
for this signal, c0 = 	u2
 ≡ �u�0	 = 1

2 and 	u2��0	
 =
1+�t/Q ≈ 1 since 	wt sin��0t	
 = 0, and �t � 1 and
Q� 1. Other initial conditions are specified in Section 3.3.
This model follows the expectations of KF for form of
model and noise. As the goal of this section is to examine
the Kalman filtering frequency estimation only, algorithms
to refine the frequency are not used in favor of a large set
of filters which sample a range of frequencies.
Figure 5 shows that the lobes characteristic of the sinc

function (discussed in Section 3) are recovered by a fre-
quency partition of KFs. This data is nearly identical
to that recovered by a corresponding DTFT, the differ-
ences due to how the KF handles noise will be illus-
trated in detail in next section. The FFT data is also
shown, which demonstrates how the devised KF (and the
DTFT) can interpolate the spectrum at arbitrary frequen-
cies with respect to the FFT. (The FFT has a frequency
spacing determined by the length of the signal as discussed
in Section 3.1.) We define the error in the amplitude as
��x��2−u2��	�2, where x� = �a� b� is the estimate from a
KF at �, and u2��	 is the expectation of the signal at the
given frequency �. Figure 6 shows the evolution of the
power estimate �x��2 and the convergence with respect
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Fig. 5. Near peak spectral response for a noisy sine (Q = 100). The
lobes characteristic of the DTFT are clearly visible in the KF. Also the
KF clearly agrees with the FFT, which here is sampled off frequency for
illustration of spectra content away from the max. For a FFT sampled
on the period of the signal, the off frequency spectral estimates sit at the
zeros between the lobes.
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Fig. 6. Evolution (a) and convergence (b) of the KF and DTFT esti-
mates of a noisy sine spectrum at the peak frequency �=�0. The black
trend line in (b) has exponent −1 and the sampling frequency s is relative
to the expected period P of the sine.

to the expectation for the on-peak frequency � = �0 for
both low and high Q systems, as well as sampling the
signal well below and well above the period P . We com-
pare the convergence to evolution of DTFT at same fre-
quencies which on-average have worse errors. Figure 7
shows evolution and convergence to zero amplitude for an
off-peak frequency � = 0�95�0. It also shows the typical
convergence is faster than the on-peak case. (In fact, the
decay rates for off-peak frequencies depend strongly on
distance from the peak frequency with frequencies farther
from the peak decaying faster consistent with decay rate
of the peaks of the sinc function.) Also apparent is that
both the KF and the DTFT show artifacts in their conver-
gence that are directly related to the lobes in the spectrum
passing through the given frequency as T increases.
Lastly, from the approximate universal relation in

Figure 8 we see that the convergence of the error in the
amplitude ��x��2−u2��	�2 ∼ N−1 ∼ T −1 with the leading
coefficients of the decay rates only marginally dependent
on noise and sampling frequency. Here, N is number of
samples and T is the total observation time. Hence, we
conclude that the efficiency in determining the frequency
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content is relatively insensitive to sampling period. It is
also apparent that in some cases that there is some propen-
sity for the KF to saturate and its error estimate to level
off. We believe this is due to the fact that as ci → 0 the
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new samples contribute very little to the estimate. If, in
fact this is the cause of the saturation, the DTFT should
be relatively immune to it.

4.2. Langevin Dynamics

A more complex model system that arguably better repre-
sents the CNT’s response is the non-dimensional harmonic
Langevin developed in Section 2.2. It differs from the
noisy sine in that brown instead of white noise is observed
in the signal uti

, i.e., the noise has a non-uniform spectral
representation, as the white noise in the input is shaped by
the system response. It also differs in that the noise is not
additive, as assumed in the KF, although as discussed in
Section 3.2, as long as the noise manifested in the observa-
tions is approximately white, the KF method is appropriate
and effective. Following,43�44 we integrate (34) viak

vi+1/2 = vi+
1
2
�vi

ui+1 = ui+vi+1/2�t

�vi+1 =−ui+1�t−
1
Q

(
vi+1/2�t−

√
Q�twi+1

)
vi+1 = vi+1/2+

1
2
�vi+1

(73)

using a time-step �t = P/100. The period P ≈ 2� for
high enough Q since �0 = 1 is implicit in Eq. (73), and in
(34) which it approximates. As stated in Section 2.2, there
are two significant parameters: Q, and �t�0 which in turn
determine the variance of the non-dimensional white noise
�2 = �t/Q and the maximum intensity ���0	=Q/�.
In Figure 9 we compare the KF response to sampling

the signal uti
at an interval s = 0�9P at fixed frequency

given by the frequency at maximum amplitude of the FFT
at 104 samples. Figure 9(a) shows that the KF, DTFT and
FFT estimates are all in agreement in the long run over a
range of quality factors. Figure 9(b) clearly shows that the
KF estimate has much reduced variance at short time com-
pared to the DTFT due to its explicit handling of noise.
Now using the parallel KF Algorithm 1 we estimate the

evolution of the peak power. Figure 10 shows the trajectory
of the peak amplitude for various instantiations of the har-
monic Langevin process. The background color contours
are calculated from an exhaustive scan of the process nor-
malized to be in the range �0�1� at each time slice. Clearly
the tracking of the peak power is robust despite fluctua-
tions and discontinuities in the underlying power spectrum
in some of the ensemble.l Figure 11a shows the ensemble

kThe numerical approximation to the random force will be band-limited
at frequency 2�/�t and correlated over �t, so Eq. (25) holds only
approximately.

lNote that we use a random number generator to construct the sequence
wi but perhaps sine series based on the Karhunen-Loève theorem would
have been more appropriate for CNT higher modes. Empirically, the
results in Section 4.3 display distinctly more continuous power spectra
over time for the few instances we calculated.
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Fig. 9. Comparison of KF, DTFT and FFT for the Langevin signal.
From (b) it is clear that KF has significantly less noise than DTFT at
early times. Both appear to interpolate FFT values. The estimated power
has been normalized by Q/�.

of long-time estimates from 100 separate instantiations of
the Langevin process. Notice that frequency distribution is
peaked whereas the amplitude distribution is widely spread
about the expectation of 1. We see this as more evidence
that frequency-based detection of attached mass is supe-
rior to amplitude-based. Figure 11(b) shows the evolution
of the frequency estimate over the ensemble and that the
error estimated from the variance of the frequency ensem-
ble appears to asymptote to a constant, consistent with
the spread about the peak frequency caused by internal
damping.

4.3. Molecular Dynamics

Molecular dynamics (MD) is typically employed to model
the dynamics of molecular systems and is an ideal tool
for representing phonon modes and thermal noise. MD
gives the stable lattice structure, computes the correct
anaharmonic phonon interactions, and the finite number
of eigenvalues of the thermal spectra. It is founded on
Newton’s law

m�ẍ� = f� (74)
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(a)

(c)

(b)

Fig. 10. Path of the adaptive set of KFs for various instances of the
Langevin model generated by different realizations of the noise process
overlaid on an exhaustive sweep by the DTFT. Background colors denote
the relative value of any point to the peak taken at each time slice. Red
indicates a value of 1 (identical to peak) while blue denotes zero.

for the atoms (ion cores) with positions x� and masses m�

together with an interatomic force f� = ��/�x� derived
from an empirical potential �. Here � is an index over all
the atoms.
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Fig. 11. Ensemble of the peak amplitude and frequency estimates at
time 100P (104 samples) (a) and evolution of the frequency estimate (b).

As mentioned earlier, the configuration we employ
is illustrated in Figure 1 where a single wall �10�10	
CNT, modeled with the AI-REBO potential,45�46�m is can-
tilevered 17.8 nm from a substrate formed of Au atoms
following an EAM potential.49 The interaction between
the CNT and the Au substrate was modelled with a sim-
ple Lennard-Jones potential (with parameters � = 1�0 Å
and � = 1�0 eV)n appropriate for surface interactions like
van der Waals attraction. As opposed to placing the CNT
directly under a thermostat’s control or omitting tempera-
ture control entirely, we choose to explicitly represent the
substrate in order to best simulate the thermal fluctuations
of the CNT accurately in real time. We embed the CNT
in the substrate which is, itself, under the control of a
Nosé-Hoover (NH) thermostat50�51 while the CNT under-
goes Newtonian dynamics according to (74). The contact
between the substrate composed of 31648 Au atoms and

mThe AI-REBO potential was designed to represent hydrocarbons,
CNTs and non-bulk carbon phases as opposed to Tersoff potential47�48

which was tuned to bulk states.
nWe found that the resonance spectrum of the CNT’s tip was largely

insensitive to the particular values of the CNT-Au interaction over a wide
range of values.
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680 C atoms that compose the embedded part of the CNT
(2900 C atoms are in the cantilevered section) provides
temperature regulation of the CNT. The NH thermostat
allows the substrate to sample the canonical, constant tem-
perature ensemble as if it where in contact with a much
larger, implicit thermal reservoir. We performed all simu-
lations at room temperature � = 300 K and thermalize the
system by selecting initial velocities from the Boltzmann
distribution (separately for the CNT and substrate) and
then allowing the system to relax under thermostat control.
In addition, we fixed the 3 outer layers of substrate, except
on side of cube where the CNT is embedded, to provide a
statically-determinant base for the CNT vibrations.
We map the atomic displacement, u� = x�−X� where

X� are positions in an undeformed reference configuration,
to a continuous, transverse deflection u�x� t	 using cross-
sectional averages and interpolation. Even with the con-
straints on the substrate, the assumed boundary conditions
u = 0 and u′ = 0 only hold on average at the embedded
end.o Assuming a fixed boundary condition at the embed-
ded end and using the value EI = 0�40806�NÅ2 from
Ref. [30] (which employed the Tersoff potential and a
rigidly fixed, zero temperature boundary condition instead
of an explicit substrate), we estimate the fundamental fre-
quency of the CNT �1 = 0�0197 THz and the period P =
0�0507 ns. In Figure 2, we observe a discrepancy �1 ≈
0�0143 THz from this estimate that was highly accurate
for the configuration given in Ref. [30]. The difference is
most likely due to the softer, thermal attachment in the
present case or the different potential has different elastic
properties. To test these hypotheses, we ran a configuration
with a rigid end instead of a substrate. Figure 12 shows
that the fundamental resonance occurs at essentially the
same frequency as with the substrate thus giving credence
to the hypothesis that the Tersoff and AI-REBO poten-
tials have slightly different elastic properties. This figure
also shows that the explicit substrate tends to damp the
higher resonances preferentially. See also Figure 2 for an
illustration of the multiple higher resonances that com-
pose the thermal/noise bath for the fundamental mode. On
a related note, a relaxation time to disturbances is � ∼
m/� =Q�P/2�	 based on the damping due to interactions
of the fundamental with the higher modes implicit in the
Langevin model. So, given a quality factor on the order of
Q ∈ �100�1000	, this scaling leads to relaxation times on
the order of 1–10 ns. Consequently we were very careful
to prepare and thermalize the CNTs before taking data, but
this effect was difficult to entirely negate.
To add the effect of an attached molecule, we increased

the mass of the last two rings of atoms uniformly, as
alluded to in the Introduction. So adding 20 mC �, where
mC is the mass of a carbon atom, lead to a mass ratio
m/M = �20/2900	�= 0�0069�.

oWe also assume that the correlations 	u′′ ·u′
 and 	u′′′ ·u
 relevant to
Eq. (12) are small.
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Fig. 12. Comparison of CNTs with and without a substrate. In the
absence of an explicit substrate the CNT’s embedded end is rigidly fixed.

4.3.1. Minimum Sampling Time

To determine the shift in the fundamental frequency of the
CNT for a sequence of attached masses we employ the
more sophisticated, closed-loop variant of the parallel KF,
namely Algorithm 2. The system is initialized in this case
so as to mimic the attachment of a molecule at the tip for
a long time, i.e., sufficiently long for the system to relax
to equilibrium. Figure 13 shows the tip trajectory for the
CNT without a tip mass that we used as a baseline. This
trajectory displays considerable fluctuations that are also
apparent in the background scan shown in Figure 14(a).
The sequence of frequency spectra shown in Figure 14
display a trend toward cleaner spectra as the tip mass is
increased (which translates to better signal-to-noise ratio
for this freely vibrating system). This is expected, as the-
ory predicts a slower vibration with added mass together
with an increased amplitude of the fundamental mode.
Figure 14 as a whole also shows that the proposed KF

is very effective at tracking the peak and that Algorithm 2
achieves confidence bounds on the order of 0.1%, which
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Fig. 13. Tip trajectory for m/M = 0.
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Fig. 14. Kalman tracking of the peak amplitude from thermally vibrating CNT with an attached mass. Note the vertical axis in each plot has been
selected to focus on the peak frequency to display the details of the tracking algorithm.

is dramatically better than the simpler Algorithm 1. The
sequence of frequency spectra shown in Figure 14 shows
that the convergence for all cases given is comparable.
However, if the fact that the trajectories with larger masses
took longer to start tracking, presumably due to to the
fact that the initial guess for the frequency based on an
unloaded beam is further from the truth, is taken into
account, the convergence in the frequency estimates shown
in Figure 15(a) displays a dependence on the magnitude
of the attached mass corresponding to the observations
made on Figure 14, i.e., the larger the mass the cleaner
the signal and the more rapid the convergence. Figures 14
and 15(a) illustrate the trade-off between certainty in the
frequency shift and the period of observation. Even at 4 ns
the error is approximately 0.2% given an ideal detector.
Also of interest is the deviation of the data from both the
full beam theory and the often-employed linearized model
shown in Figure 15(b). We speculate that this is due to the
softer, noisy connection provided by the thermalized sub-
strate, although it is possible that the discrepancy is simply

noise that ensemble averaging would remove. Given that
the deviation is systematic it makes the latter conjecture
unlikely. Also of note is the discrepancy between the lin-
earized theory and the full model even in the low percents
of m/M , a fact which has practical impact on the accuracy
of mass sensors in and of itself.

4.3.2. Finite Residence Time

In this example we simulate the rudiments of a molecule
that becomes attached and stays attached for a finite
amount of time. This time may not be sufficient for the
system to attain equilibrium. We simulate this process by
simply changing the mass of the atoms at the tip of the
CNT so that m/M jumps from 0 to 0�0690 at a specified
time. The background scans in Figure 16(a) clearly shows
the change in spectral content and a shift in frequency
comparable to that calculated in the previous section for
m/M = 0�0690. To determine the time of attachment, the
Kalman filters are periodically restarted completely using

J. Comput. Theor. Nanosci. 8, 1364–1384, 2011 1381
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Fig. 15. (a) convergence of each of the four cases m/M =
0�0�0069�0�0345�0�0690 based on the convergence parameter B in
Eq. (71) and (b) relative frequency shifts from KF estimates compared
to both full beam theory and a linearized model.

only the center frequency from the previous run as input.
These frequency estimates also demonstrate a large shift
when the mass attaches, as shown in Figure 16(b). Note
the full frequency scan was only restarted once over the
duration considered, i.e., when the mass attaches mid-
way through, while the Kalman tracking algorithm resets
approximately every nanosecond. This resetting frequency
determines the temporal response time. The error in the
mass estimate, on the other-hand, is directly related to
the estimated frequency shift, as in the last section. Also
apparent from Figure 16 is that the correlation time for
disturbances of the fundamental mode are considerably
shorter than the estimate � ∼ Q�P/2�	 would lead us to
believe. It is possible that the short-wavelength thermal
vibrations have different relaxation times than the funda-
mental, and the cascade from the fundamental to the higher
modes of the thermal bath and vice versa is likely much
slower and on the timescale of the estimated relaxation
time. Since we are only interested in the response of the
fundamental mode, we are not hindered by the conjectured
slow relaxation between modes. Figure 16 demonstrates
the inner/outer loop mode to reset the trajectory tracking
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Fig. 16. Kalman tracking the change in the fundamental CNT tip fre-
quency as a mass attaches. The global scan (top) applies the Kalman
filtering algorithm over a large frequency range at the initial time and
again at the attachment time. Frequency tracking is performed by peri-
odically restarting the Kalman ensemble and using the estimate for the
peak at the end of an ensemble (bottom).

is effective in estimating the time a mass attaches to the
tip to the resolution of approximately 1 ns.

5. DISCUSSION

We explored the limits of mass detection via simula-
tion that accounted for the thermal effects associated with
anaharmonic phonon interaction in the CNT and interac-
tions with a finite temperature substrate, albeit idealized
in other aspects. The development of the proposed filter-
ing algorithms was facilitated by theoretical developments
that provided a fundamental understanding of the noise
characteristics of a freely vibrating CNT. This aspect of
the work included: (a) determining dependence of reso-
nance frequencies on added tip mass through the charac-
teristic equation, Eq. (7), (b) an extension of the Treacy8

equilibrium theory to the case of additional mass attached
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to the tip, Eq. (15), to determine the amplitude sensi-
tivity to added mass, and (c) a reduced-order Langevin
model that provided much of the characteristic dynam-
ics in a simplified form, as well the peak intensity of the
anharmonically damped fundamental resonance, Eq. (30),
and a non-dimensional version of the relevant parame-
ters, Eq. (34). Guided by this theory and with reference
to basic spectral analysis, we developed a Kalman filter,
specifically Algorithm 2, customized to do real-time/on-
the-fly estimation of the necessary spectral information to
detect shifts in the primary resonant frequency. This novel
Kalman filter for spectral analysis proved to be not only
efficient due to its incremental nature but also very effec-
tive and noise-tolerant in tracking the trajectory of the
peak amplitude through frequency space. With our algo-
rithm and an ideal detector we demonstrated that mass
discrimination on the order of fractions of a percent can be
achieved in nanoseconds. Moreover, our Kalman filter can
effectively undersample the dynamics to accommodate the
frequency limits of existing detectors and still potentially
achieve orders of magnitude improvement in the response
time of resonator-based mass detectors.
While this work concentrated on detecting attached

masses by tracking changes in the fundamental frequency
of thermal vibrations, many other potential uses for these
methods exist. For example, the proposed algorithm can
be easily modified to identify changes for multiple, well-
separated resonant peaks of the CNT (with a correspond-
ing added burden on the bandwidth of the detector). In
future work we intend to explore the dynamics of a CNT
driven by an external electric field, as commonly used
in many nanoscale mass detectors, that is also under the
influence of thermal noise like the freely vibrating CNT
analyzed in this work. Also, we would like to investi-
gate the interaction of the vibrating CNT and the ambient
atmosphere including more of the details of the dynamics
and kinetics of molecule attachment and release. In addi-
tion, we intend to develop a noise model for a sufficiently
realistic detector based on one of the existing technolo-
gies as a prelude to implementing our algorithms in a real
device. In this aspect, the proposed parallel Kalman fil-
ter has a straightforward graphics processing unit (GPU)
implementation.
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